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Deep Neural Networks (DNNs) are now increasingly adopted in a variety of Artificial Intelligence (AI) ap-

plications. Meantime, more and more DNNs are moving from cloud to the mobile devices, as emerging AI

chips are integrated into mobiles. Therefore, the DNN models can be deployed in the cloud, on the mobile de-

vices, or even mobile-cloud coordinate processing, making it a big challenge to select an optimal deployment

strategy under specific objectives.

This article proposes a DNN tuning framework, i.e., DNNTune, that can provide layer-wise behavior anal-

ysis across a number of platforms. Using DNNTune, this article further selects 13 representative DNN models,

including CNN, LSTM, and MLP, and three mobile devices ranging from low-end to high-end, and two AI

accelerator chips to characterize the DNN models on these devices to further assist users finding opportuni-

ties for mobile-cloud coordinate computing. Our experimental results demonstrate that DNNTune can find a

coordinated deployment achieving up to 1.66× speedup and 15% energy saving comparing with mobile-only

and cloud-only deployment.
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1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) have been widely adopted in a variety of appli-
cations, such as speech recognition, image classification, and natural language processing. Tradi-
tionally these applications are deployed as Request-Response services in the cloud; however, in
the meantime, they are moving to the mobile devices, as the emerging AI chips are integrated into
smartphones [3]. For example, Huawei Kirin 970 chipset has integrated a dedicated neural pro-
cessing unit, thus enabling both cloud-based and on-device AI processing [4]. Gartner predicted
that 80% of smartphones will have on-device AI capabilities by 2022 [8]. Therefore, the DNNs can
be processed both by the cloud and mobiles, thus bringing rich computational resources to mobile
users.

The cloud and mobile devices exhibit diverse performance and energy consumption, thus it is
a big challenge to deploy DNNs between the cloud and mobile coordinately. In particular, when
a DNN is completely processed in the cloud, the computation latency is minimized, but the raw
input data need to be transferred to the cloud and introduces extra network transmission overhead.
However, when a DNN is totally processed on mobile devices, the network transmission overhead
is eliminated, but the computation latency will increase. Let us take two DNN examples on a
representative Mobile ARM CPU, Qualcomm Snapdragon 625. For a small DNN model such as
MLP that contains 5 layers, the mobile processing takes 136 ms, thus the latency is acceptable
from the users’ perspective. However, for a large DNN model such as ResNet-50 that contains 50
layers, the mobile processing takes 616 ms, thus the users’ experience is significantly impacted.
Therefore, the ResNet-50 is preferred to be processed in the cloud, reducing the latency to 217 ms
(with the data transmission overhead counted). This challenge is discussed as “cloud-edge system”
in the Berkeley view of system challenges for AI [54]. Meanwhile, researchers have proposed some
technologies to support collaborative processing when the cloud is always available [29]. In this
article, we assume an ideal connection with the cloud 100% available.

A representative research is Neurosurgeon [44], which automatically partitions DNN models be-
tween the mobile device and the cloud at the granularity of neural network layers. Neurosurgeon
demonstrates the benefit of collaborative mobile-cloud processing. Mobile-cloud can both reduce
the computation latency and energy consumption, which are both critical for user experience.
Therefore, we take mobile-cloud collaborative processing as an important aspect for DNN infer-
ence. However, determining the optimal partitioning strategy is still a big challenge, since it signifi-
cantly depends on the workload, the processing framework and the hardware platform, the amount
of transferred data, the network bandwidth, and latency. Even worse, the mobile computing ex-
hibits extremely significant diversity, including hardware capacity, vendor-provided libraries, and
processing framework. The increasing diversity makes it more challenging to determine an op-
timal deployment strategy. Neurosurgeon designed the model partitioning mechanism into Caffe
and studied how to select the partitioning point and process the model collaboratively, without
considering auto-tuning. In comparison, DNNTune is decoupled with specific processing frame-
works, and existing frameworks can be integrated into DNNTune. Furthermore, DNNTune focused
on the configuration tuning, including the hardware platform and software processing framework.
Moreover, DNNTune can provide architecture-oriented analysis results during the tuning process.

In this article, we propose a DNN tuning engine for mobiles, named DNNTune, assisting users to
analyze the DNN model’s performance and energy across a number of mobile platforms. DNNTune

can support a variety of hardware and software frameworks, providing layer-wise execution char-
acteristics for users, and further automatically seek for a partitioning point for mobile-cloud co-
ordinate processing for the certain hardware/software combination.

The key challenge comes from the diversity of software frameworks, DNN model behav-
iors, and hardware platforms. First, layer-wise performance analysis requires to automatically
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instrument the various software frameworks, for monitoring and controlling the layer-wise ex-
ecution. Second, some DNN models include layers running for a very short time, bringing obsta-
cles to obtaining their precise execution time and profiling. Finally, different hardware platforms
typically provide different libraries for deep learning; therefore, we need to integrate the various
libraries into various software frameworks.

To meet the above three challenges, DNNTune enables users to specify three issues, i.e., how
to generate the model for tuning, what the processing platform is (including hardware and soft-
ware framework together with the DNN libraries), and what the objective is for tuning. First, with
these configurations, our DNNTune framework generates the model for the user-selected frame-
work, integrates user-specified libraries into the specified software framework, and instruments
the specified software framework to monitor and control the layer-wise execution and profiling.
Second, DNNTune leverages the specified software framework to run the DNN model on the mo-
bile and the cloud, respectively, with layer-wise profiling collected. Finally, DNNTune theoretically
partitions the DNN model at all possible points for execution, computes the performance and en-
ergy consumption for each partitioning point, and obtains the optimal deployment strategy under
a certain objective. This article makes the following contributions:

• We propose the DNNTune, a DNN tuning framework, to provide layer-wise characteristics
across a variety of software frameworks, DNN models, and hardware platforms. DNNTune

can find the optimal mobile-cloud coordinate deployment strategy under a certain objective,
with the DNN model being run only twice, one on the mobile and the other in the cloud.

• We propose an adaptive layer-wise profiling mechanism across a variety of software frame-
works, DNN models, and hardware platforms. DNNTune can automatically integrate the
specified libraries into the specified software framework, and further instrument the frame-
work to monitor and control the layer-wise execution and profiling, automatically adapting
to the execution time of the layers.

• We select a variety of DNN models (including CNN, LSTM, and MLP) and three mobile
devices (including low-end to high-end smartphones, both CPUs and GPUs) and two AI ac-
celerator chips to evaluate DNNTune. Our experimental results demonstrate that DNNTune

can find a coordinated deployment achieving up to 1.66× speedup and 15% energy saving
comparing with mobile-only deployment.

This article is organized as follows: Section 2 introduces the DNNTune framework. Section 3
describes our experimental setup and evaluation platforms. Section 4 presents how to find mobile-
only optimal deployment strategy using DNNTune. Section 5 describes potential of collabora-
tive mobile-cloud processing with detailed performance analysis. Section 6 analyzes all perfor-
mance/energy related factors and provides detailed analysis for understanding the experimental
results. Section 7 discusses related work. Section 8 concludes.

2 DNNTUNE FRAMEWORK

In this section, we first discuss the challenges of building a DNN tuning framework, then present
the building blocks of our DNNTune framework.

2.1 Challenges

The challenge of building a DNN tuning framework for mobiles comes from two factors.
First, the mobile hardware and software exhibits significant diversity. As discussed in

Facebook [60], the distribution of peak performance of smartphone SoCs exhibits a wide spread,
and there is no standard mobile chipset to optimize for. Furthermore, there are a number of soft-
ware frameworks and third-party libraries, which are not runnable on all hardware platforms.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 49. Publication date: December 2019.



49:4 C. Xia et al.

Fig. 1. The DNNTune framework overview.

Therefore, the tuning framework is required to automatically run the DNN models across various
hardware/software configurations. Specifically, given a hardware/software combination, the

framework should be able to collect performance related hardware issues and translate

them into corresponding software parameters to control the tuning process.

Second, the DNN model diversity increases the challenge of layer-wise profiling. It is a
critical issue to obtain layer-wise characteristics for mobile-cloud coordinate computing. However,
the layer execution time exhibits a very large range, from several microseconds to hundreds of
milliseconds. For a short term layer whose execution time is shorter than typical profiling intervals,
the tuning framework is required to automatically insert glue codes to repeatedly execute the layer,
for obtaining its profile.

2.2 DNNTune Framework

Figure 1 shows the overview of DNNTune, which reads the user’s configurations and generates
the reports on performance and energy, together with an optimal deployment strategy under cer-
tain objective. DNNTune contains two modules, i.e., a configuration interface and benchmarking
engine.

The configuration interface provides users an approach to specify the DNN model for analyzing,
the processing platform (including hardware platform, software framework, and DNN libraries),
and the objective when deploying the model for mobile-cloud collaborative processing.

The benchmarking engine is the core module of DNNTune. As shown in Figure 1, the upper
three modules serve to generate the DNN model with proper format (“Model Generator”), gener-
ate proper hardware profiler (“Platform Profiler Generator”), and generate the control parameters
for the specified processing framework (“Framework Controller”). And the lower three analyzer
modules analyze the performance/energy and seek to find an optimal deployment strategy.

2.3 Benchmarking Engine

2.3.1 Configuration Interface. The configuration interface enables users to configure the DNN
model, the processing platform, and the analysis objective. Figure 2 shows an example. In par-
ticular, in the Model section, users can specify the DNN model that can be an existing Caffe or

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 49. Publication date: December 2019.



DNNTune: Automatic Benchmarking DNN Models for Mobile-cloud Computing 49:5

Fig. 2. An example for the configuration interface.

TensorFlow input, together with the name and shape for input and output. Furthermore, data type
can be specified for model quantization.

In the Processing section, users can specify the following issues:

• Hardware platform, including CPU, GPU, or AI accelerator for the mobile and cloud, the
number of CPU threads, using big/little/big+little cores for mobile computing.

• Software configuration, including the processing framework and DNN library. For example,
Figure 2 specifies two frameworks (TensorFlow and MACE) and two libraries (Eigen and
NNPACK) for tuning.

• Profiling configuration, including which profiling tool will be used (by far Snapdragon pro-
filer [18] and Simpleperf [17] are considered), whether enabling profiling for energy (per-
formance profiling is always enabled), and the HW&SW events for profiling.

In the Objective section, users can specify the tuning objective, i.e., latency-first or energy-first.

2.3.2 Model Generator. The Model Generator serves to convert a Caffe or TensorFlow model
to the format of user-specified framework. We select Caffe and TensorFlow format models as the
input of DNNTune, since there have been a large number of existing models for them. A set of
format translators is integrated in the model generator, which automatically selects the proper
translator according to the user-specified input model format and the processing framework to be
used. For example, when the user specifies the input model as TensorFlow format (.pb) and the
processing framework as MACE, the DNNTune automatically invokes the TensorFlow-to-MACE
translator to generate the input for MACE.

2.3.3 Framework Controller. The framework controller is the key component in DNNTune, to
obtain compatibility across various software framework and hardware platforms. It serves to trans-
late user configurations into the framework parameters, integrate specified libraries into the spec-
ified framework, and instrument the framework.

Configuration. First, the framework controller serves to translate user configurations into
corresponding parameters according to specified processing framework. In particular, it reads
the configuration file to extract framework-related configurations on the mobile side, including
the processing unit, CPU thread number, CPU affinity. These configurations will be converted
into framework parameters. For example, in MACE, these parameters are as follows: device ,
omp_num_threads , cpu_af f inity_policy.

Libraries. Second, the framework controller provides support to switch between different li-
braries, which can be provided by the hardware vendor or third-party developers. For example,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 49. Publication date: December 2019.



49:6 C. Xia et al.

Fig. 3. The instrumentation for layer-wise profiling in DNNTune.

both TensorFlow and TFLite use Eigen as the default DNN library, but the performance of Eigen
is not satisfactory. Therefore, these frameworks enable developers to select libraries at building
time, such as MKLDNN, cuDNN, NNPACK. Therefore, we build multiple versions beforehand for
each framework, with each library corresponding to one version. At tuning time, the framework
controller selects the proper version according to the user’s configuration.

Instrumentation. The framework controller inserts instrumentation codes into the frame-
work, to monitor and control the layer-wise execution. The challenge comes from the short run-
ning layers, for which the execution time is even smaller than typical time interval of profiling
tools.

For example, the Snapdragon Profiler samples the system power every 50 ms, while the compu-
tation latency of layer “bottleneck_3_2” in MobileNet-V2 is 5 ms. Therefore, to obtain the energy
consumption of “bottleneck_3_2,” the layer will to be executed iteratively as least 10 times to
reach the time interval. We propose a layer-wise monitoring and controlling mechanism as shown
in Figure 3. Our key insight is to adaptively control the execution time for each layer, ensuring
that short running layers can run multiple times to reach the required time interval. Meanwhile,
the long running layers will not be repeated unnecessarily.

As shown in Figure 3, the left side shows the framework controller, and the right side for the
instrumented framework. In particular, before a layer is started for execution, the “Layer Start Con-
troller” sends a signal to the instrumented framework. On the other side, we introduce a helper
thread to wait for the signal from the layer start controller. When it receives the signal, the shared
variable nlayer_f laд is set to 1, indicating that the layer can be started. The main thread is blocked
until the nlayer_f laд is set. Afterwards, the instrumented framework sends a signal to the frame-
work controller, notifying that the layer is actually started, then the layer is executed repeatedly.
Meanwhile, the framework controller collects the profiling data for this layer. When the execu-
tion duration reaches the preset time interval, the “Time Interval Notifier” sends a signal to the
instrumented framework, with the nlayer_f laд being reset by the helper thread, indicating that
the layer execution can be terminated. Finally, the layer end signal and the layer execution times
(count ) are sent to the framework controller, which invokes compute_averaдe_pro f ile to compute
the profiling for one execution of the layer.

Automatic Instrumentation. We observed that typical DNN programming frameworks lever-
age dataflow models and invoke DNN operations via op->run in the graph execution. Therefore,
we enable users to specify the file name and function name of the graph execution, and our
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Fig. 4. Mechanism for auto instrumentation.

framework controller automatically seeks for the op->run in the function and inserts instrumen-
tation codes as described above. Figure 4 uses MACE as an example to demonstrate how the au-
tomatic instrumentation works. The left part in white color shows the user specification, and the
right side in green color shows the generated instrumentation.

2.3.4 Performance and Energy Analyzer. Performance and Energy Analyzer serves to analyze
the profiling results and forwards the results to Deployment Analyzer. The Performance Analyzer
associates the profiling results to the execution of operations and analyzes the performance of each
operation such as GFLOPS, LLC misses, and Instructions Per Cycles(IPC). The Energy Analyzer
computes the energy consumption of each operation based on the computation latency and mobile
system power reported by the profiler.

2.3.5 Deployment Analyzer. The deployment analyzer serves to determine the optimal parti-
tioning strategy using the following steps:

Step 1. Running and profiling. For a given DNN model d , DNNTune first runs it totally on
the mobile and collects the layer-wise profiles dm , then runs it totally in the cloud and collects the
layer-wise profiles dc .

Step 2. Computing for each partitioning point. Afterwards, DNNTune partitions the DNN
model at all possible partitioning points, thus gets a set of partitioned models P, with each element
corresponding to a partitioning point p. For eachm ∈ P, the analyzer automatically partitions the
model at p, and we denote the first part as m1 and the second part as m2. m1 and m2 will be
executed on the mobile and cloud, respectively, and their execution time and energy consumption
can be computed from dm and dc , denoted as Tm , Tc , Em , and Ec .

For wireless communication, we measure the end-to-end latency of 3G, LTE, and Wi-Fi on sev-
eral mobile devices using TestMyNet [21] following Kang [44], computing the data transfer cost
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Table 1. DNN Specifications

Name Input Output Layers # Params FLOPs

rnn_ptb_small [20, 200] [20, 10K] 2 2.65M 14.8M
DeepSpeech [16, 494] [16, 29] 6 29M 464M
mnist_mlp [784] [10] 5 13.9M 13.9M

Transformer [1,7] [1, 14] 12 49M -
Inception-V1 [224, 224, 3] [1K] 22 6.79M 3.19 G
Inception-V3 [299, 299, 3] [1K] 48 22.75M 6 G

ResNet-50 [224, 224, 3] [1K] 50 25.6M 3.8 G
Vgg16 [224, 224, 3] [1K] 16 138M 16 G

MobileNet-V1 [224, 224, 3] [1K] 15 4.2M 576M
MobileNet V2 [224, 224, 3] [1K] 20 3.4M 300M

SqueezeNet-V11 [227, 227, 3] [1K] 15 1.2M 360M
ShuffleNet-V2 0.5× [224, 224, 3] [1K] 15 1.4M 41M

DeepLab-V3 [513, 513, 3] [65, 65, 21] 20 2.1M 17.8 G

using the equation

Tt = Tt t l +vp/b, (1)

Et = w ∗Tt , (2)

where Tt t l is the network round-trip latency, vp is the data volume transferred to the cloud that
can be obtained from dm , b is the network bandwidth,w is the power for the transfer module, e.g.,
Wi-Fi module.

Therefore, the end-to-end latency and energy consumption, i.e.,T and E, can be computed using
the following equation:

T p = Tm +Tt +Tc , (3)

Ep = Em + Et , (4)

where we omit the energy consumption by the cloud, since we only consider the mobile side for
battery saving.

Step 3. Traversing. Finally, DNNTune traverses the set P, to seeking for a partitioning point
that is optimal to the user-specified objective.

2.3.6 Platform Profiler Generator. We leverage two tools for designing the platform profiler
generator, i.e., Simpleperf and Snapdragon profiler. Simpleperf is a native profiling tool for An-
droid, which provides a command-line interface supporting broadly the same options as the Linux-
tool perf, with some Android-specific improvements. Snapdragon profiler is a profiling software
developed by Qualcomm for Snapdragon series mobile SoCs, which provides a graphic interface
to analyze CPU, GPU, DSP, memory, power, thermal, and network data.

3 EXPERIMENTAL SETUP

3.1 DNN Networks

In this article, we consider three kinds of DNN models, with their parameters listed in Table 1.

• Convolutional Neural Networks (CNNs):

In this work, we select nine popular CNNs: four traditional CNNs (Inception-V1 [55],
Inception-V3 [56], Vgg16 [53], and ResNet-50 [40]), four mobile-optimized CNNs
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Table 2. Device Specifications for Edge Platforms

Device OnePlus 5T OnePlus 3 Redmi Note 4X

SoC Qualcomm Snapdragon 835 Qualcomm Snapdragon 820 Qualcomm Snapdragon 625

Process 10 nm 14 nm 14 nm

Notation Mobile A-CPU Mobile A-GPU Mobile B-CPU Mobile B-GPU Mobile C-CPU Mobile C-GPU

Platform Kryo 280 Adreno 540 Kryo [2] Adreno 530 Cortex A53 Adreno 506

Cores/Compute Units 4+4 256 2+2 256 8 96

L1 Cache 64 I+32 I KB | 64 D +32 D KB - 32 I + 32 D KB - 32 KB -

L2 Chche/On Chip Mem 2+1 MB 1,024 KB 1 MB+512 KB 1,024 KB 1 MB 128 + 8 KB

Freq 4×2.45+4×1.85 GHz 710 MHz 2×2.15+2×1.59 GHz 624 MHz 2.0 GHz 650 MHz

RAM 8 GB LPDDR4X 6 GB LPDDR4 3 GB LPDDR3

OS Android 8.1 Android 8.1 Android 7.0

(MobileNet-V1 [41], MobileNet-V2 [51], SqueezeNet-V11 [43], ShuffleNet-V2 0.5× [48]), and
DeepLab-V3 [26] with MobileNet-V2 as network backbones. The first eight models are pro-
posed for image classification and pre-trained on ImageNet dataset [31]. DeepLab-V3 is for
image semantic segmentation and pre-trained on pascal-VOC dataset [32].

• Recurrent Neural Network (RNNs): RNNs are able to process arbitrary length of input
data and gain extensive use in natural language processing. The most widely adopted RNN
is Long Short Term Memory Networks (LSTMs). In this work, we use two LSTM models.
One is rnn_ptb_small, a small LSTM described in Reference [62], which has two hidden
layers with 200 hidden units per layer and is trained on the Penn Tree Bank (PTB) [49]
dataset. The other is DeepSpeech [39], which has six layers: three FullyConnected layers,
one LSTM layer with 4,096 hidden units, and two FullyConnected layers. The batch size is
16.

• Multilayer Perceptrons (MLPs): MLPs are proposed for classifications, which are com-
posed of a chain of fully connected layers. In this article, we use a 5-layer small MLP net-
work proposed in Reference [52], which is designed for hand-written digits recognition of
MNIST dataset [47], and a big MLP network proposed in Reference [58], which is designed
for language understanding, named as Transformer in this article.

3.2 Hardware Platforms

For the cloud side, we use Intel Xeon CPUs equipped with NVIDIA GPUs for DNN processing. In
particular, the CPU processor is Intel Xeon E5-2620 v4 and the GPU is NVIDIA Titan V100.

For mobile devices, we select three distinct smartphones spanning from high end to low end,
i.e., OnePlus 5T [15], OnePlus 3 [14], and Redmi Note 4X [16]. Both OnePlus 5T (referred to as
Mobile A, high end) and OnePlus 3 (Mobile B, medium end) leverage ARM’s big.LITTLE archi-
tecture, which is a heterogeneous computing architecture coupling relatively battery-saving and
slow processor cores (LITTLE) with relatively more powerful and power-hungry ones (big). All
the cores have access to the same memory regions, and workloads can be swapped between the
big and little cores on the fly. Note that Mobile B used the Kryo CPU, which is Qualcomm’s first
custom 64-bit quad-core CPU based on the Arm Cortex-A series processor [2]. Redmi Note 4X
(Mobile C, low end) consists of eight homogeneous cores. Table 2 depicts the detailed hardware
specifications of the three mobile platforms. In our evaluation, we cleared all the background ap-
plications, turned off the screen, and switched the phone to fly-mode to avoid resource contention.
For the embedded devices, we choose Jetson TX2 [23] as a representative AI platform at the edge.
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Fig. 5. Latency and energy consumption of MobileNet-V2 on Mobile A when using different resources.

It has a 256-core NVIDIA Pascal GPU and the typical power is 7.5W. More hardware specifications
can be found at the web page of Reference [23].

3.3 Deep Learning Frameworks

We use three frameworks for evaluation, i.e., TensorFlow [25], MACE, and TFLite. All the three
frameworks are compiled with Android NDK r14b (targeting arm64-v8a).

TensorFlow version r1.7 is used for evaluating CPUs, both for mobile and cloud processing,
which uses Eigen3 [34] as its DNN library. As Tensorflow does not support mobile GPU, we use
MACE [13] and TFLite [19] for evaluating GPU, which uses OpenCL to support mobile GPU com-
puting.

4 MOBILE-ONLY OPTIMAL DEPLOYMENT

4.1 Latency-first

Figure 5 shows the latency and energy consumption of MobileNet-V2 on Mobile A-CPU when
using only big cores (from 1–4 cores), only small cores (from 1–4 cores), all big+little cores, and
using GPU, with the backend framework being MACE. In particular, the horizontal axis represents
for different configurations, with the blue bars representing the latency against the left vertical
axis, and the orange bars representing the energy consumption against the right vertical axis. From
Figure 5, we can observe that, when using mobile CPU, 4 big cores provide the best performance,
which is 42 ms. When mobile GPU is available, using GPU arrives at the best performance, which
is 22 ms. We observed that comparing with little_4, using hybrid cores does not bring extra latency
benefit or energy consumption; the reason is that MobileNet-V2 is a small CNN model and cannot
fully utilize all the cores. When the workload is distributed across the 4 big cores and 4 little
cores, each core works in a low-power mode. Therefore, more cores do not introduce more energy
consumption. Detailed analysis will be discussed in Section 6.2.

4.2 Energy-first

In this article, we compute the energy consumption using the equation below:

E = Tm (e ) ∗ pm (e ), (5)

where E is the energy consumption for computing a DNN model in units of Joule, e is the mobile
platform, m is the DNN model, Tm (e ) is the DNN computation time on e in units of seconds, and
pm (e ) is the average system power of e when computing m. In particular, pm (e ) is obtained by
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Fig. 6. Speedup of quantized models.

profiling. In particular, we first record and average the system power provided by Snap-
dragon_Profiler when there is no workload on platform e . We donate it as p (eidle ). Second, we
start our workload m and record the system power as pm (eactive ). Third, we compute the sys-
tem power consumed of running m using the equation pm (e ) = pm (eactive ) − p (eidle ). Figure 5
shows that using 4 little cores consumes the least energy (0.123 Joule) on CPU. While using GPU
consumes the least (0.035 Joule) comparing with the optimal configurations of CPU.

4.3 Discussing Model Quantization

Representative CNN models are both computationally intensive and memory intensive, and re-
searchers proposed “deep compression” [36], also known as model quantization, which converts
the 32-bit float weights to using fewer bits, i.e., 8 bits, without significantly affecting the precision
of DNN models.

In this section, we use TFLite [20] and MobileNet-V1, MobileNet-V2, Inception-V1, and
Inception-V3 to evaluate the model quantization. The models are trained on ImageNet dataset [31]
and we download them from the TFLite hosted models website [22].

The accuracy loss of the model quantization is beyond the scope of this article. In general, users
need to re-train the model for quantization, and DNNTune can assist users to deploy the quantized
model on the mobile and cloud. As reported in the TFLite official website [24], the accuracy loss
of quantized models in inference is little, e.g., 1% accuracy degradation for MobileNet-V2.

Figure 6 exhibits the significant speedup of quantization over non-quantization on three mobile
CPUs. For example, MobileNet-V2 gains 4.7×, 2.0×, and 4.0× on the three mobile CPUs, respec-
tively. The performance benefit comes from two issues. First, the 8-bit integer computation is much
faster than the 32-bit floating-point computation. Second, the memory footprint of model weights
and inputs is reduced by 75%, e.g., from 39 MB to 10.2 MB for MobileNet-V2 on Mobile A-CPU,
and the cache miss count is significantly decreased, e.g., from 3.35M to 1.06M for MobileNet-V2
on Mobile A-CPU when using four big cores.

5 ANALYZING MODEL PARTITIONING

In this section, we investigate the potential collaborative mobile-cloud processing of DNN com-
putation using DNNTune.

5.1 Evaluation Methodology

In our evaluation, we use CPUs and GPUs of Mobile A, Mobile B, and Mobile C as the mobile
devices, and a server CPU as the cloud platform. In particular, the CPU processor is Intel Xeon

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 49. Publication date: December 2019.



49:12 C. Xia et al.

Fig. 7. Mobile-cloud partitioning latency on mobile A-CPU via Wi-Fi.

E5-2620 v4. We use TensorFlow for the evaluation of CPUs and MACE for mobile GPUs. The com-
putation latency of executing MobileNet-V2, SqueezeNet-V11, Vgg16, and ShuffleNet-V2-0.5× is
38 ms, 10.7 ms, 90 ms, and 5 ms, respectively, on the cloud platform. For the mobile-cloud commu-
nication, we consider 3G, 4G, and Wi-Fi, with latency of transmitting the CNN raw input data to
the cloud being 850 ms, 180 ms, and 100 ms [44].

5.2 Latency-first Model Partitioning

For mobile-cloud partitioning, the end-to-end latency is composed of three parts: the computation
latency of executing the first part of DNN model on the mobile device, the communication latency
of transferring the layer input data and results, and the computation latency of executing the left
part of DNN model on the cloud platform. DNNTune traverses all the layers of each DNN model
to determine the outperforming partitioning strategy to minimize the computation latency.

5.2.1 Analyzing CNN Behaviors for Model Partitioning. Whether model partitioning can bene-
fit depends on two issues, i.e., the communication overhead at the partitioning point to transfer
data from the mobile to cloud, and the benefit of processing the latter layers in cloud. In Figure 7,
we take Mobile A-CPU as the platform and Wi-Fi as the network, and present the end-to-end la-
tency when partitioning the model at all possible points, with each bar representing a partitioning
point. For each bar, the blue, orange, and grey part represent the computation time on device, the
communication time, and the computation time in cloud, respectively.

We use MobileNet-V2, SqueezeNet-V11, and Vgg16 to demonstrate why we can find collabora-
tive processing opportunity for MobileNet-V2 but cannot for SqueezeNet-V11 and Vgg16. The key
factor is the input data volume and computation time for each layer. Figure 8 shows the layer-wise
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Fig. 8. Layer-wise computation and layer input data size latency on Mobile A-CPU.

computation time and the input data volume for the three models, with the horizontal axis repre-
senting each layer, the blue bars representing the computation time (against the left vertical axis),
and the yellow bars for the data volume (against the right vertical axis). For Figure 7 and Figure 8,
we use one core for evaluation (big core for Mobile A and Mobile B).

• Mobile-cloud processing is optimal.
As shown in Figure 7(a), for MobileNet-V2, bottleneck_3_3 is the optimal partitioning
point, and the end-to-end latency is 115 ms. In comparison, the mobile-only and cloud-only
processing time are 154 ms and 138 ms, respectively. The layer-wise input data volume and
computation time are shown in Figure 8(a). We can see that the layer of bottleneck_3_3
has smaller input data volume, thus transferring the data to cloud would introduce slight
overhead, i.e., 20.3 ms. In comparison, the overhead of transferring the input data of the
first layer is 100.7 ms. Meanwhile, there is a large amount of computations after the layer,
and the computations can achieve significant performance improvement when executing
in cloud. It consumes 104.1 ms when executing the layers after the partitioning point of
bottleneck_3_3 on Mobile A-CPU, while only 33.2 ms in the cloud. Thus, partitioning at
bottleneck_3_3 brings significant performance improvement.

• Mobile-only is optimal. As shown in Figure 7(b), for SqueezeNet-V11, the mobile-only pro-
cessing is optimal; the reason is that the computation time is very small on the mobile CPU.
It consumes 99.7 ms on the Mobile A-CPU while 110.7 ms when executing in cloud (with
transferring time counted in).

• Cloud-only is optimal.
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Table 3. Mobile-cloud Partitioning on Three Mobile Platforms Using Wi-Fi

MobileNet-V2 ShuffleNet-V2 0.5×

conf mobile cloud mobile-cloud speedup partition point mobile cloud mobile-cloud speedup partition point

Mobile A-CPU
1 big 154 138 115 1.2× bottleneck_3_3 42 105 86 1.0× output

1 little 381 138 138 1.0× input 112 105 86 1.23× MaxPool

Mobile B-CPU
1 big 136 138 125 1.10× bottleneck_5_2 33 105 33 1.0× output

1 little 181 138 138 1.09× input 65 105 65 1.0× output

Mobile C-CPU
1 core 358 138 138 1.0× input 99 105 81 1.22× Stage2

8 core 190 138 138 1.0× input 66 105 66 1.0× output

Mobile C-GPU GPU 152 138 83 1.66× bottleneck_4_4 100 105 64.6 1.55× MaxPool

As shown in Figure 7(c), for Vgg16, the cloud-only is optimal. There are two reasons. First,
the data volume of the input data is small, as shown in Figure 8(c), thus it introduces slight
data transfer overhead if the model is processed totally in the cloud. Second, the computa-
tion amount of the model is large, thus the cloud-only processing will achieve extremely
significant performance improvement comparing with mobile processing.

5.2.2 Results for More Models and Platforms. Besides MobileNet-V2, another model that has
collaborative processing is ShuffleNet-V2, for which MaxPool_2 is the optimal partitioning point,
and the end-to-end latency is 86 ms, while the mobile-only and cloud-only processing times are
112 ms and 105 ms.

Similar results can be obtained for Mobile B and Mobile C. As Table 3 shows, Mobile A-CPU can
achieve 1.2× speedup comparing to the mobile-only and cloud-only methods. For ShuffleNet-V2
0.5× on Mobile B-CPU, the mobile-only leads to the best latency, as the computation latency is
lower than the communication latency.

And for ResNet-50, Inception-V3, DeepSpeech, and DeepLab-V3, cloud-only is optimal, as the
computation latency of cloud is much lower than that of mobile device. While for small DNN mod-
els like SqueezeNet-V11, mobile-only is optimal, as the computation latency on mobile is lower
than the communication latency. Intuitively, a model can benefit from model partitioning if its
first few layers rapidly reduce the data volume, while its remaining layers still involve massive
computations. Thus model partitioning can process the remaining layers in cloud with little com-
munication overhead. For MLP and LSTM models such as Transformer and DeepSpeech, the cloud-
only is optimal. There are two reasons. The first is that the network input data volume is small
comparing with CNN models (less than 1 KB vs around 150 KB). The second is that computation
latency is much lower on cloud than that of on mobile devices.

5.2.3 Behavior Under 4G/3G. When using 4G and 3G, the optimal partitioning strategy is
mobile-only, as the communication overhead is extremely high for MobileNet-V2 and ShuffleNet-
V2 0.5×. The communication overhead of transferring the input data of input layer is 180 ms for 4G
and 890 ms for 3G, while the computation latency of MobileNet-V2 is 154 ms, 116 ms, and 190 ms
for Mobile A-CPU, Mobile B-CPU, and Mobile C-CPU, respectively. Similar results can be found
for ShuffleNet-V2 0.5×.

5.2.4 Model Partitioning Results for Using Mobile GPUs. When considering the model partition-
ing with mobile GPUs, we need to re-collect the computation time on GPUs in Figure 8. Here, we
discuss the results and omit the figures due to space limit. For Mobile A-GPU and Mobile B-GPU,
mobile-only is optimal for MobileNet-V2 regardless of using Wi-Fi, 4G, or 3G; the reason is that
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Fig. 9. Mobile-cloud partitioning energy consumption on mobile A-CPU via 4G.

the high-end GPU provides great computing power and reduces the computation latency to 22.1
and 28.3 ms, respectively, which is much lower than the cost of transferring the data to the cloud.

For Mobile A-GPU and Mobile B-GPU, the mobile-only is optimal for MobileNet-V2 and
ShuffleNet-V2 0.5×. For Mobile C-GPU, the mobile-only and cloud-only latency are 152.3 ms and
138.7 ms, respectively, while the model partitioning approach is 83.8 ms and the optimal parti-
tioning point is bottleneck_4_4 for MobileNet-V2 when using Wi-Fi. For ShuffleNet-V2 0.5×, the
mobile-only and cloud-only latency are 100.9 ms and 105.7 ms, respectively, while the model par-
titioning approach is 64.6 ms and the optimal partitioning point is Stage2.

5.3 Energy-first Model Partitioning

In this section, we switch our objective to energy consumption. We use TensorFlow as the backend
framework and three mobile CPUs for evaluation. We choose to use one core in this section (for
Mobile A and Mobile B, we use the big core). In particular, the active power of the 3G, 4G, and
Wi-Fi module are 0.8, 2.5, and 1.2 watts, respectively. The energy consumption of transferring the
raw input data (cloud-only) are 0.712, 0.450, and 0.121 Joule, respectively.

5.3.1 4G. Now, we examine the case when using 4G. Figure 9 shows the energy consumed by
mobile A when partitioning the model at each possible point. It shows that the energy consumed
for computation increases as the partitioning point moving from left to right, since more and
more layers are computed on the device. The communication energy is determined by the volume
of data transferred to the cloud. We found that bottleneck_4_4 is the optimal partitioning point
for MobileNet-V2, with the energy of 0.158 Joule, while the cloud-only and mobile-only are 0.453
Joule and 0.182 Joule, respectively. For ShuffleNet-V2 0.5×, GlobalPool is the optimal partitioning
point, with the energy of 0.091 Joule, while the cloud-only and mobile-only are 0.252 and 0.099
Joule, respectively.

5.3.2 Wi-Fi. When using Wi-Fi, the cloud-only scheme would be optimal for MobileNet-V2,
since the Wi-Fi latency is low enough to consume little energy to finish the communication (0.121
Joule), while the energy consumption of mobile-only approach is 0.182, 0.318, 0.268 Joule for
Mobile A-CPU, Mobile C-CPU, and Mobile C-CPU, respectively. For ShuffleNet-V2 0.5×, mobile-
cloud can save 5.5% to 15.1% energy on the three mobile platforms when compared to best of
cloud-only and mobile-only approach, as Table 4 shows.
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Table 4. Energy Consumption on Three Mobile CPUs Using Wi-Fi for ShuffleNet-V2 0.5×

mobile-only cloud-only mobile-cloud energy saving partition point
Mobile A-CPU 0.088 0.121 0.077 12.5% Stage2
Mobile B-CPU 0.099 0.121 0.084 15.1% Stage2
Mobile C-CPU 0.055 0.121 0.052 5.5% Stage4

Fig. 10. The layer-wise computation latency and IPC for Vgg16 profiled by DNNTune.

5.3.3 3G. The energy consumption of transferring the input data of the input layer is 0.712
Joule when using 3G network, while the energy consumption of executing the MobileNet-V2 on the
Mobile A-CPU, Mobile C-CPU, and Mobile C-CPU is 0.182, 0.318, and 0.268 Joule, respectively. For
ShuffleNet-V2 0.5×, the mobile-only energy consumption is 0.088, 0.099, and 0.055 Joule, respec-
tively. Therefore, the mobile-only is the optimal strategy when using 3G, since the communication
energy overhead is higher than the computation energy for MobileNet-V2 and ShuffleNet-V2 0.5×.

5.4 Layer-wise Profiling

DNNTune can provide detailed layer-wise profiling information, assisting users to analyze the
layer-wise behaviors for DNN models. In this section, we use Vgg16 and Mobile-A platform to
demonstrate the profiling results of using Snapdragon_Profiler, for which the profiling interval is
50 ms. We use MACE as the backend software framework.

Figure 10(a) shows the profiling result of the layer-wise execution latency for Vgg16. The results
show that the convolution layers occupied the most execution time. Using DNNTune, users can
easily analyze the time distribution of a DNN model.

Figure 10(b) shows the profiling results of the layer-wise IPC (Instructions per Cycle) for Vgg16.
The results show that the IPC of pooling layers is significantly higher than the convolution layers;
the reason is there is a large number of integer instructions in pooling layers, while Kryo 280 has
improved integer IPC, but lower floating-point IPC [11]. In particular, the integer score/MHz for
Kryo 280 is 0.84, while the floating-point score/MHz is only 0.57 [6].

Snapdragon profiler can directly provide the whole-program profiling information for a DNN
model, as Figure 11(a) shows the cache misses for Vgg16, which uses 50 ms as the sampling interval.
To associate the whole-program cache behaviors to each layer, DNNTune can provide Figure 11.
Figure 11 presents the layer-wise cache references and cache miss ratios, respectively, with the
layer-wise profiling functionality of DNNTune.

6 ANALYZING INFLUENCE FACTORS

In this section, we analyze five typical influence factors for DNN models on mobile platforms.
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Fig. 11. The layer-wise cache references and miss ratio for Vgg16 profiled by DNNTune.

Fig. 12. Computation latency of DNN models on mobile CPUs and GPUs with optimal configuration.

6.1 Factor 1: Processing Unit

DNNTune can launch the DNN workload to CPU or GPU by specifying the Processing_unit in the
configuration interface.

6.1.1 Latency. Figure 12 depicts the computation latency of DNN models on the three mobile
CPUs(a) and GPUs(b). For each DNN model, we have three bars representing the results running
on the three mobile CPUs, with the blue bars for high-end Mobile A, the orange bars for mid-end
Mobile B, and the grey bars for low-end Mobile C. We use Tensorflow for the evaluation of CPU
and MACE for the evaluation of GPU.

Figure 12(a) leads to our Observation 1: Modern mobile CPUs are powerful enough to

process small LSTM/MLP models, but cannot process large LSTM/MLP models and most

CNNs unless they are specifically optimized for mobiles.

As Figure 12(a) shows, the latency of small LSTM (rnn_ptb_small) and MLP(mnist_mlp) varies
from 24 ms to 139 ms on the three mobile CPUs and is small enough to be directly deployed on
mobile CPUs. But things are different for large LSTM/MLP models and CNNs. In particular, for the
large LSTM model DeepSpeech, the computation latency varies from 215 ms to 400 ms, indicating
that it cannot achieve real-time processing on mobile CPUs. For the large MLP model Transformer,
the computation latency varies from 6,903 ms to 15,821 ms, leading to a similar conclusion with
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DeepSpeech. Note that for Transformer, the computation latency value is too big to be plotted in
Figure 12. Furthermore, the computation latency of traditional CNNs (Inception-V1, Inception-V3,
Vgg16, ResNet-50, and DeepLab-V3), ranging from 157 ms to 4,000 ms, is too large to be deployed
on mobile CPUs.

The computation of LSTM and MLP depends on the number of hidden nodes, the time steps, and
the layers. Take the LSTM models for example. The small LSTM, e.g., rnn_ptb_small, has 20 steps
and only 200 hidden nodes, while the large LSTM model, e.g., DeepSpeech, has 16 steps and 4,096
hidden nodes. Therefore, whether a LSTM model can be directly deployed on mobile CPUs depends
on the model structure.

Since traditional CNNs are proposed to reach the highest accuracy for image classification, the
models are computation-intensive and typically run in the cloud. Mobile-optimized CNN models,
such as MobileNet-V1, MobileNet-V2, SqueezeNet-V11, ShuffleNet-V2 0.5×, are designed to effec-
tively maximize accuracy while being mindful of the restricted resources for mobile applications.

On the mobile devices, mobile GPUs are integrated in the SoC typically for image display, and
recently researchers are making efforts to leverage them for computation-intensive neural net-
works [42]. We present the experimental results of the DNN models running on three mobile
GPUs in Figure 12(b), with the DNN models run in the framework of MACE. LSTM and MLP are
not shown, since MACE does not support them.

From Figure 12(b), we have Observation 2: High-end and mid-end mobile GPUs can sig-

nificantly reduce the computation latency than CPUs, while low-end cannot.

As Figure 12(b) shows, the latency of MobileNet-V1 on Mobile A-GPU and Mobile B-GPU is
32 ms and 40 ms, respectively. Using mobile GPU gains 3.5× and 2.3× speedup comparing to the
corresponding CPUs, and the average speedup across all the CNN models is 3.3× and 2.3×, re-
spectively. The reason is that the high-end and mid-end GPUs have 256 compute units, while the
corresponding CPUs have only 12 and 6 compute units, respectively (each little core has 1 ALU,
and each big core has 2 ALUs).

However, things are different for low-end mobile GPUs. Note that we got out-of-memory (OOM)
error when running float Vgg16 on Mobile C-GPU using MACE, as Mobile C only has 3 GB
memory while Mobile A and Mobile B have 8 and 6 GB memory, respectively. The average
speedup across all the CNN models is only 0.9× on Mobile C, which means that the low-end GPU
is even slower than the CPU. This is because the low-end GPU has only 96 compute units. And the
benchmarking result of OpenCL-Z [1] demonstrates that the performance of Mobile C-GPU is 32.55
GFLOPS, while the performance of Mobile A-GPU is 256 GFLOPS in comparison. As Facebook has
found that in a median device, the GPU provides only as much as theoretical GFLOPS performance
as CPU [60]. As Mobile C is the low-end device, the computation latency of GPU is even higher
than that of GPU. For DeepLab-V3, Mobile C-CPU is better than Mobile C-GPU; the reason is that
the DNN kernels for CPU are highly optimized, while the openCL for GPU is not highly optimized.

6.1.2 Energy. Figure 13 depicts the energy consumption of all the eight DNN models on the
three mobile CPUs and GPUs, with the horizontal axis representing the DNN model names and
the vertical axis representing the energy consumption. From Figure 13, we have Observation 3:

Mobile GPUs are more energy-efficient than Mobile CPUs, especially for high-end and

mid-end mobile GPUs.

As Figure 13(a) and Figure 13(b) show, the energy consumption of executing MobileNet-V1 is,
respectively, 0.22, 0.51, and 0.35 Joule on the three mobile CPUs when the computation latency
is minimized, while it is only 0.062, 0.063, and 0.117 Joule on the corresponding GPUs. On aver-
age, CPUs consume 2.9×, 7.5×, and 2.1× more energy than GPUs for Mobile A, Mobile B, and
Mobile C, respectively.
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Fig. 13. Energy consumption of models on three mobiles.

Fig. 14. Performance on Mobile A-CPU varying with CPU affinity and thread number.

6.2 Factor 2: CPU Affinity

In this section, we evaluate using big/little/hybrid cores, respectively, with TensorFlow and Eigen
as the framework.

6.2.1 Latency. Figure 14 presents the computation latency on the high-end Mobile A-CPU. (a)
shows the latency varying with the number of threads using only big cores, and (b) shows the
computation latency varying with the CPU affinity using big/little/hybrid cores.

Figure 14 leads to Observation 4: Simultaneously using big and little cores does not al-

ways benefit. As Figure 14 shows, for Inception-V3, the hybrid execution is slower than only
using big cores. And DeepLab-V3 exhibits the similar behavior. The reason is that when using big
and little cores, the workload is automatically distributed by the Eigen library routine, which is
unaware of the heterogenous architecture and evenly distributes the computation to the four big
and four little cores. Therefore, DNNTune observed that CPU utilization of the big cores is up to
75% when using only big cores, while it decreases to 36% when using hybrid cores.
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6.2.2 Energy. Figure 15 shows the power and energy consumption for MobileNet-V1 running
on the three CPUs, with the blue bars representing the power (against the left vertical axis) and
the red bars representing the energy (against the right vertical axis).

In particular, for big.LITTLE architectures, the big cores are much more energy-hungry than
little cores. For example, the power of one little core is 0.5 watts while the one big core is 1.41
watts for the Mobile A, using the power measuring approach in Section 4.2. We find that using one
little core saves only 18.3% energy comparing to using one big core. We explain the reason using
Equation (5). Although the power of using one little core is much lower than that of using one big
core (0.50 watt vs 1.41 watts), but the latency is much higher (483 ms vs 209 ms). Therefore, the
energy consumption is 0.50 × 483 vs. 1.41 × 209, i.e, 18.3%. Note the high-end Mobile A has lower
power than the mid-end Mobile B, and the reason is that the SoC of Mobile A is manufactured in
10 nm FinFET while the Mobile B is in 14 nm [12]. Another reason is that the micro-Architecture
of Mobile A-CPU is up to 30% more energy-efficient than that of Mobile B-CPU [7].

6.3 Factor 3: CPU Thread Number

In this section, we evaluate the scalability of DNN models.

6.3.1 Latency. Figure 14 demonstrates that when configuring to use only big cores, CNNs ex-
hibit good scalability with the number of threads. However, the scalability of rnn_ptb_small and
mnist_mlp is worse, due to the fact that inference of rnn_ptb_small and mnist_mlp is dominated by
the vector-matrix multiplication operation and the Eigen library is not optimized for vector-matrix
multiplication to utilize the multi-cores. Similar results can be observed on the little cores.

6.3.2 Energy. Using Equation (5), we further depict the energy consumption of the three devices
in Figure 15, and we can have Observation 5: Using more cores does not always consume

more energy. The reason is that the energy consumption is the product of the power and execu-
tion time. For example, on Mobile A-CPU, comparing with using only one little core, using four
little cores reduces the computation time from 483 ms to 183 ms, and thus reduces the energy con-
sumption by 8%, even if it increases the power from 0.5 watt to 1.41 watts. Therefore, DNNTune

automatically tunes the configuration to determine an optimal configuration for user-specified
objective.

6.4 Factor 4: Processing Frameworks

In this section, we show how to use DNNTune to evaluate the end-to-end inference latency, en-
ergy consumption, and memory footprint of the three DNN frameworks, including Tensorflow,
TFLite(float and quantized), and MACE.

Table 5 exhibits the experimental results of using Mobile A-CPU using four big cores on the
three DNN frameworks. TFLite supports both float and int8 (quantization). “Lat,” “En,” and “M”
are short for “Latency,” “Energy,” and “Memory,” respectively, with the units being “ms,” “Joule,”
and “MB.”

6.4.1 Latency. For full precision(float) DNN models, MACE is the optimal framework for la-
tency. The reason is that MACE is specially optimized for every common shape of convolution
operations with SIMD optimization, while TFLite adopts the img2col+gemm manner for all con-
volution operations and uses the Eigen library, which is not highly optimized. However, when
quantized DNN models are considered, TFLite quantized is the optimal. Furthermore, TFLite and
MACE are much more memory-efficient than Tensorflow, as they are carefully optimized for mo-
bile devices to minimize the memory consumption.
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Fig. 15. System power and energy consumption when

running MobileNet-V1.

Fig. 16. Speedup of FP16 over FP32.

Table 5. Computation Latency, Energy Consumption, and Memory Usage of Seven CNN Models

Inception-V1 Inception-V3 ResNet-50 Vgg16 DeepLab-V3 MobileNet-V1

Lat En M Lat En M Lat En M Lat En M Lat En M Lat En M

TF 207 0.413 110 612 1.812 310 403 1.126 340 1,446 5.881 1,200 1,256 5.259 150 113 0.296 70

TFLite 216 0.663 50 865 2.876 120 479 1.805 120 1,959 8.365 630 1,547 5.047 80 124 0.204 30

MACE 87 0.459 90 574 2.958 100 196 1.023 150 432 2.169 400 843 4.276 100 45 0.237 20

Quant 50 0.194 10 216 0.963 30 122 0.570 30 446 2.202 160 720 3.146 20 24 0.102 10

6.4.2 Energy. There is no such framework that is optimal on energy consumption for all DNN
models. Let us take two DNN models for illustration. For MobileNet-V1, TFLite is the optimal with
0.203 Joule energy consumption, while for ResNet-50, MACE is the optimal.

6.4.3 Memory. TFLite and MACE are more memory-efficient than Tensorflow, as they are spe-
cially designed for resource-constraint devices. Quantized models can save 74% memory occupa-
tion than full precision DNN models on average; the reason is that quantized models use int8 (one
byte) data format for weights and input data while full precision models use float (four bytes).

6.5 Factor 5: Mobile GPU Half-precision

Typically, GPUs support half-precision floating point(FP16) operations for increasing performance
with negligible precision loss [35]. In this section, we switch to using half-precision floating point
number(FP16) for evaluation.

Figure 16 shows the speedup of FP16 over FP32 on three mobile GPUs. Note that the value
for Vgg16 and Mobile C-GPU is missing, as when executing Vgg16 FP32 on Mobile C-GPU, the
model size exceeded the memory size allocated for GPU. In particular, the speedup of Inception-
V1 is 2.5× and 2.2× on Mobile A-GPU and Mobile B-GPU, respectively. The performance comes
from two issues. First, high-end GPUs have native hardware that supports for FP16 data type [51].
Second, the half precision reduces the size of weights, thus reduce the off-chip memory traffic.
Using Snapdragon_Profiler, we found that the max memory bandwidth of Mobile A-GPU drops
from 2.9GB/s to 2.3GB/s. Thus, for high-end and mid-end mobiles, using DNN models with FP16
can both reduce the the computation latency and the memory consumption.

However, the low-end Mobile C-GPU benefits little from using FP16. As Figure 16 shows, Mobile
C-GPU gains only 1.25× speedup using FP16; the reason is that the low-end Adreno GPU does not
support native FP16.
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Table 6. DNN Performance on Jetson TX2 and NPU

Platform DNN Model Inception-V1 Inception-V3 Resnet-50 MobileNet-V1 SqueezeNet-V11

NPU

Computation Latency (ms) 35 71 53 33 13

Speedup to best mobile CPU 2.49× 8.08× 3.70× 1.76× 0.79×
Speedup to best mobile GPU 2.27× 3.91× 3.25× 0.96× 1.81×

Jetson TX2

Computation Latency (ms) 17 91 59 15 12

Speedup to best mobile CPU 5.12× 6.3× 3.70× 3.83× 0.86×
Speedup to best mobile GPU 4.67× 3.05× 3.32× 2.11× 1.96×

6.6 Discussion: Evaluating AI Accelerators

In this section, we use two typical hardware platforms to evaluate DNNTune for AI accelerators,
one is the NVIDIA Jetson TX2 with a 256-core Pascal GPU; the other is Honor 10 [10] with a Neural
Processing Unit (NPU) integrated in Huawei’s Kirin 970 SoC. To run DNN models on the NPU, we
leverage the HiAI SDK [9] to convert the Caffe models (.caffemodel) and TensorFlow models (.pb)
to the specific data format (.cambricon).

Table 6 shows the computation latency and speedup achieved when using the corresponding
accelerators for five CNN models. When computing the speedup, we use the outperforming CPU
and GPU configurations as the baselines, respectively. In particular, for Mobile A-CPU, the best
CPU results are the computation latency when using four big cores and MACE as the framework,
as discussed in Section 6.4.

Table 6 demonstrates that for most CNN models, AI accelerators can achieve significant perfor-
mance improvement, except for MobileNet-V1 and SqueezeNet-V11. For traditional CNNs such as
Inception and ResNet-50, NPU is 2.49× to 8.08× faster than the best CPU and 2.27× to 3.91× faster
than the best GPU. Similar results can be observed for Jetson TX2. MobileNet-V1 and SqueezeNet-
V11 are the exceptions, since these two models are optimized for mobile devices using the depth-
wise convolution, which significantly reduced the computations.

7 RELATED WORK

In this section, we discuss mobile and cloud DNN inference studies that relate to our work.
Mobile deep learning. Xu et al. [61] has presented that Android apps are increasingly adopting

DL as core building blocks. The prior efforts to deploy the DNN models on mobile phones can be
classified into two aspects: utilizing hardware (for example, DeepMon [42]) and optimizing models
(Deep-compression [36]). Thus, our work is inspired by those extraordinary studies and try to
characterize the behaviors of DNN models on mobile devices with optimization techniques.

DNN benchmarking. Turner et al. [57] implemented several common DNN compression tech-
niques (weight pruning, channel pruning, and quantization) and evaluated the accuracy, execution
time, and memory space on both CPU and GPU. They found that channel pruning can greatly re-
duce the execution time while weight pruning cannot. Their work provided us observations about
model pruning and quantization. Our work not only considers the optimization techniques but also
other configurations that affect the inference of DNN models and finds the opportunities for col-
laborative mobile-cloud computing. Wang et al. [59] proposed a parameterized benchmark suite,
ParaDNN, to characterize TPU, GPU, and CPU for training DNN models (including FC, CNN, and
RNN). They provided 14 major observations and insights and identify the strength and weakness
of TPU, GPU, and CPU. Their work mainly focuses on the DNN training on the servers, while our
work focuses on the DNN inference on mobile devices.

Mobile-cloud computing. Mobile-cloud processing has been researched by a number of re-
searchers. CloneCloud [28] investigates how to seamlessly off-load arbitrary functionality code of
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an application to cloud. Comet [33] works at a more coarse-grained granularity to allow the off-
loading of a thread. MAUI [30] leverages the benefits of managed language to profile an application
and decide whether each function invocation should be off-loaded based on runtime statistics.

In recent years, a number of works focus on collaboratively processing DNNs using both cloud
and edge devices [37, 44]. In particular, MCDNN [37] developed a compiler together with a runtime
scheduler to tradeoff between the accuracy and resource consumption, by reasoning about on-
device/cloud execution tradeoffs. Another relevant work is Reference [52], which focuses on the
training phase of DNNs on cloud platforms, while our work focuses on inference on both cloud
and mobiles.

Comparison to Neurosurgeon. Neurosurgeon [44] is the most related work to DNNTune,
which proposed an approach to partition the computations of DNNs at the layer granularity
and minimize inference latency and/or energy consumption, by uploading certain layers into the
cloud. Neurosurgeon implemented the model partitioning mechanism into Caffe. In comparison,
DNNTune is a general tuning infrastructure that is decoupled with any specific processing frame-
works. For the model partitioning strategy, Neurosurgeon and DNNTune can get the same results,
as provided in Section 5. However, as a tuning infrastructure, DNNTune can provide more re-
sults for tuning a number of factors, as the hardware platform (Section 6.1, Section 6.6), software
processing configurations (Section 6.2, Section 6.3, Section 6.4), and DNN model optimizations
(Section 4.3, Section 6.5). Moreover, DNNTune can provide architecture-oriented analysis results
(Section 5.4).

DNN characterization and tuning. DNN characterization of mobile devices appeals to re-
searchers. Facebook [60] looked at the mobile phones that Facebook runs on and introduced state-
of-the-art DNN inference in the wild. Xu et al. [61] carried out the empirical study on Android apps
and answered the questions of what kind of apps and how apps adopt DL. Hanhirova et al. [38]
studied the latency and throughput of CNN models on both mobile and cloud platforms. We pro-
posed detailed latency and energy characterization together with quantitative profiling analysis.
Furthermore, our DNNTune framework can find the optimal configurations to minimize the exe-
cution time or energy consumption, in which those studies are deficient.

Researchers have also focused on the layer-wise profiling of DNN models. Kim et al. [46] analyze
performance characteristics of different convolution algorithms for each layer, and they mainly
evaluate the training and inference latency of DNN layers; while our framework can provide both
software and hardware profiling event metrics of DNN layers. Karki et al. [45] propose a new DNN
benchmark suite that can run on any platform that supports CUDA and OpenCL and evaluate
five CNNs and two RNNs to analyze the in-depth architectural statistics of these networks. They
present the latency and energy consumption breakdown and the instruction types of different layer
types. However, using our framework, users can find opportunities for mobile-cloud coordinate
computing to reduce latency and energy consumption.

TVM [27], an open-source deep learning software stack that bridges the gap between DNN
frameworks and different hardware platforms, can automatically tune the code generation for
DNN operators, i.e., including tile size, unrolling, and vectorization. Complementarily, our
DNNTune framework automatically tunes how to construct a DNN network using the individual
operators, which can be tuned using TVM or other tuners. Furthermore, DNNTune framework
can also tune the partitioning point for mobile-cloud collaborative processing.

8 CONCLUSION AND FUTURE WORK

In this article, we present a DNN tuning framework, DNNTune, using it to analyze the behav-
iors for three representative DNN models (CNN, LSTM, and MLP), on three mobile platforms
and two hardware platforms with AI accelerators. We evaluate five typical influence factors
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(including processing unit, CPU affinity, CPU thread number, processing frameworks, and mo-
bile GPU half-precision) regarding the inference latency and energy consumption. DNNTune can
report the profiling and tuning results and automatically find the optimal configuration when de-
ploying DNN models on mobile devices. Furthermore, we collect the layer-wise execution time
and energy consumption, and our DNNTune framework can find opportunities for mobile-cloud
collaborative processing. Experimental results show that DNNTune can achieve 1.66× speedup on
inference latency and reduce the energy consumption by 15.1% at most.

In future work, we will study how to support tuning for DNN training in DNNTune, study
how to deal with the unreliable network and the performance variability in the wild, and support
ONNX [5].
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